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ABSTRACT: In a Pd-catalyzed double C−H activation reaction,
a pyridine-type ligand is identified, for the first time, to enable a
highly para-selective C−H arylation of monosubstituted arenes.
Excellent para-selectivity is achieved with a variety of arenes
containing alkyl, methoxyl, and halo substituents.

Biaryls are an important structural motif in natural products,
biologically active compounds, drug molecules, and

organic materials.1 Formation of biaryls via C−H/C−H
coupling is potentially an attractive method as the prefunction-
alization step is omitted.2 However, achieving regioselectivity
on both arene-coupling partners is challenging.3 Moderate
success has been achieved by combining ortho-directed C−H
activation with nondirected C−H activation.4−6 While the
ortho-selectivity of one of the two arenes is secured by the
directing group, regioselectivity on the monosubstituted arenes
containing no directing group remains to be substantially
improved.5 For example, para-selective C−H arylation of
monosubstituted electron-rich anisole has been reported with
encouraging para-regioselectivity.5b,d,g Recently, we reported a
Pd-catalyzed para-selective C−H arylation of monosubstituted
arene using F+ as the bystanding oxidant (eq 1).7 The observed

para-selectivity is crucially dependent on the use of a
stoichiometric F+ reagent. Based on an earlier related study,8,9

we attributed this selectivity to a para-selective C−H cleavage

by [ArPd(IV)F] species. However, achieving para-selectivity
using oxidants other than a stoichiometric F+ source has not
been successful. Herein, we report the use of a catalytic amount
of ligand that significantly enhances the para-selectivity in a
double C−H activation reaction without involving [ArPd(IV)-
F] species, thus demonstrating the feasibility of developing a
ligand for achieving para-selectivity (eq 2).
We have recently systematically established that Pd(II)-

catalyzed C−H activation can be drastically influenced by
pyridine- and quinoline-based ligands.10 The observed ligand
effects encouraged us to test if we could replace the fluoride at
the Pd(IV) center by a suitable ligand and still afford para-
selectivity in the C−H cleavage step. To test this hypothesis, we
began to investigate the regioselectivity of the well-established
C−H coupling of acetanide with toluene.5b,c,g In one of the
studies, a ortho/meta/para selectivity of 1/16/16 was
obtained.5b Preliminary screening of our pyridine ligands
afforded a significantly improved para to meta selectivity (15/
1) when pyridine (L3) was used as a ligand, albeit in low yield
(eq 3). The use of pivaloyl-protected aniline substrate
PhNHCO-t-Bu (1a) gave improved yield and selectivity,
while other directing groups were inferior (Scheme 1).

Using PhNHCO-t-Bu as the substrate, we further examined a
variety of ligands (Scheme 2). In the absence of ligand,
treatment of PhNHCO-t-Bu (1a) and toluene afforded arylated
products (mono and di) in 53% yield with a para/meta ratio of
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3/2 for monoproduct 2a. Since the F+ reagents used to achieve
the para-selectivity in our previous study contain amines and
amides L1−L2, we also tested these ligands and obtained poor
regioselectivity (L1−L2). Among the various tested pyridine-
and quinoline-based ligands, we found that 3-acetylpyridine
(L13) and methyl nicotinate (L15) gave the best result in terms
of both para-selectivity and yields. The regioselectivity of the
nondirected C−H activation sensitively depends on the

structure of the ligands. Compared with para- and meta-
substitued pyridine, ortho-substitued pyridine only gave lower
regioselectivity. Meanwhile, the electron-withdrawing group at
the para- and meta-positions of pyridine showed a higher para/
meta ratio than the electron-donating group. Some other
nitrogen-containing heterocycles were also tested (L21−L27).
When bidentate ligand L28 was employed, no desired product
was formed. We further investigated the loading of ligand L13
and found that 30 mol % of ligand gave better result with a
para/meta ratio of 28/1 for 2a (see the Supporting
Information).
With these optimized conditions in hand, we began with a

survey of variously substituted anilide substrates. As shown in
Scheme 3, anilides containing electron-donating methyl and

methoxy groups were arylated with toluene to give the
corresponding biaryl product with an excellect para/meta
ratio (≥22/1) with respect to toluene. By increasing the
amount of TFA and/or using L3 as ligand, anilides containing
electron-withdrawing fluoro, chloro, bromo, and trifluorometh-
yl groups also reacted with toluene to give the biaryl products
in good yields but slightly lower regioselectivity. The chloro

Scheme 1. Screening of Directing Groupa−d

aReaction conditions: 1a, A−C (0.2 mmol), Pd(OAc)2 (10 mol %),
pyridine (20 mol %), TFA (1.0 mmol), Na2S2O8 (0.6 mmol), toluene
(2 mL), 70 °C, 16 h. bYield is determined by 1H NMR analysis of the
crude reaction mixture using CH2Br2 as an internal standard. cMono-
and diarylation (mono + di) is shown in parentheses. dRegioselectivity
of 2a is determined by GC analysis.

Scheme 2. Screening of Ligandsa−c

aReaction conditions: 1a (0.2 mmol), Pd(OAc)2 (10 mol %), L (20
mol %), TFA (1.0 mmol), Na2S2O8 (0.6 mmol), toluene (2 mL), 70
°C, 16 h. bYield determined by 1H NMR analysis of crude reaction
mixture using CH2Br2 as an internal standard. Mono- and diarylation
(mono + di) is shown in parentheses. cRegioselectivity of 2a is
determined by GC analysis.

Scheme 3. Scope of Anilidesa−c

aReaction conditions: 1a−o (0.2 mmol), Pd(OAc)2 (10 mol %), L13
(30 mol %), TFA (1.0 mmol), Na2S2O8 (0.6 mmol), toluene (2 mL).
bIsolated yields are given. Mono- and diarylation (mono + di) is
shown in parentheses. cRegioselectivity is determined by GC analysis.
dL3 (30 mol %), TFA (2.0 mmol). eTFA (2.0 mmol).
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and bromo groups in products 2i−l are useful handles for
further structural elaborations.
This protocol is also applied to the other substituted arenes

containing alkyl, methoxyl, and halo groups, and high levels of
para-selectivity and moderate to good yields are obtained
(Scheme 4). In sharp contrast to the meta-selectivity observed

in the [RhIIICp*]-catalyzed ortho-coupling of benzamides with
monohalogenated benzene (meta/para ratio 2.6/1−4.7/1),5f
our reaction gives highly para-selective product with a para/
meta ratio of 15/1−20/1.
Since the cyclopalladated complex of the first C−H

activation step involving anilide directing group is well-
known,5d,11 we focused on the second C−H activation step.
A lack of kinetic isotope effect determined by intermolecular
competition experiments between toluene and toluene-d8 infers
that the second C−H activation step most likely involves an
electrophilic palladation by the ligand-supported Pd(II)3d,4a,d,e

or Pd(IV)5d,7−9 species (Scheme 5 and 6). It is known that the
π-acceptor character of pyridine ligands could increase the
electrophilicity of Pd centers.12 Presumably, the ligand-bearing
Pd center is sterically hindered and prefers to react at the para-
position via an electrophilic palladation pathway.
In conclusion, we have developed a ligand that can drastically

improve the para-selectivity of Pd-catalyzed ortho-arylation of
monosubstituted arenes without using stoichiometric F+

reagent. This finding paves the way for further development
of ligand-controlled regioselective arylation of monosubstituted
arene with or without directing groups.
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Scheme 4. Scope of Substituted Arenesa−c

aReaction conditions: 1a (0.2 mmol), Pd(OAc)2 (10 mol %), L13 (30
mol %), TFA (1.0 mmol), Na2S2O8 (0.6 mmol), ArH (2 mL).
bIsolated yields are given. cRegioselectivity is determined by GC
analysis. dTFA (2.0 mmol). eL3 (30 mol %).

Scheme 5. Kinetic Isotope Effect

Scheme 6. Proposed Mechanism
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